

川崎机器人 KF19/26 系列

安装和连接手册

(E 控制器)

川崎重工业株式会社

前言

本手册说明了KAWASAKI—川崎KF19/26型号喷涂机器人的安装和连接工序。

在进行任何操作之前,敬请完整阅读、理解本手册和安全手册的内容,并请一定严格遵守所有的安全规定。

本手册只说明了 KF19/26 系列机器人手臂的安装和连接。对于控制器和电缆的安装和连接,请见另册发行的手册,防爆控制器的安装和连接手册。

对于只按照本手册中某一部分内容进行操作而导致的事故或损害,川崎公司将不负任何责任。

- 本手册适用于如下型号的机器人 -

KF192、KF262 KF193、KF263 KF194、KF264

- 1. 本手册并不构成对使用机器人的整个应用系统的担保。因此,川崎公司将不会对使用这样的系统而可能导致的事故、损害和(或)与工业产权相关的问题承担责任。
- 2. 川崎公司郑重建议: 所有参与机器人操作、示教、维护、维修、点检的人员,预先参加川崎公司准备的必需的培训课程。
- 3. 川崎公司保留未经预先通知而改变、修订或更新本手册的权利。
- 4. 事先未经川崎公司书面许可,对本手册整体或其中的任何部分,均不可进行任何形式的再版、重印、翻印、转载或复制。
- 5. 请把本手册小心存放好,使之保持在随时备用状态。机器人如果需要重新安装、或搬运到不同地点、或卖给其他用户时,请务必将本手册附上。一旦出现丢失或严重损坏,请和您的川崎公司代理商联络。

Copyright © 2010 by Kawasaki Heavy Industries Ltd. All rights reserved.

川崎重工 版权所有

安全

在本手册中,下述符号的内容应特别注意。

为确保机器人的正确安全操作、防止人员伤害和财产损失,请遵守下述方框符号表达的安全信息。

▲ 危险

不遵守本标志内容可能会引起死亡。

▲ 警告

不遵守本标志内容可能会引起人身伤害或死亡。

▲ 小心

不遵守本标志可能会引起人身伤害和/或机械损坏。

____ [注 意]____

表示关于机器人规格、搬运、示教、操作和维护的注意信息。

▲ 警告

- 1. 本手册给出的图表、顺序和详细解释可能并不绝对正确。所以,在使用本手册去做任何工作时,有必要投以最大的注意力。
- 2. 本手册中有关个案的安全描述,并不完全适用于所有的机器人工作。保证每项工作的安全,请阅读并完整理解安全手册和相关的法律、法规、法令及其相关资料中各种有关安全的解释和描述,同时请为各项工作采取合适的安全措施。

KF19/26 系列 川崎机器人 安装和连接手册

目 次

女玍		2
1.0	注意事项	4
1.1	搬运和保管	4
1.2	机器人手臂的安装环境	5
1.3	防爆警告性说明	6
1.4	警告标签	7
2.0	动作范围和规格说明	9
3. 0	机器人手臂的安装和连接工作流程1	17
4. 0	机器人搬运方法1	18
4. 1	钢丝绳吊装1	8
5. 0	基座的安装尺寸2	22
6. 0	安装空间2	23
7. 0	安装方法2	27
8.0	工具安装2	29
8.1	KF192/2622	
8.2	KF193/2633	32
8.3	KF194/2643	36
9.0	压缩空气系统连接4	10
9. 1	防爆规格4	
	为机器人手臂供气4	
	1 日本防爆规格4	10
999	2 中国防爆抑格 4	11

1.0 注意事项

本章只描述了安装和连接机器人时的安全预防措施。关于其他的安全事项,请参阅另册发行的安全手册。

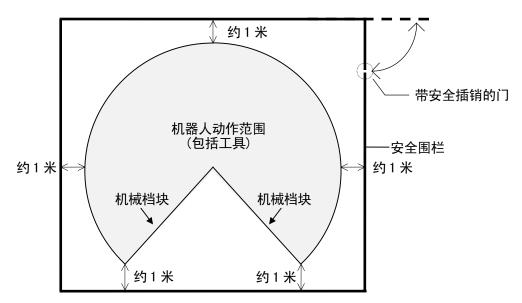
1.1 搬运和保管

当搬运川崎机器人到其安装位置,请严格遵守如下注意事项。

▲ 警告

- 1. 当使用起重机或叉车搬运机器人时,永远不要人工支撑机器人。
- 2. 在搬运中,永远不要爬在机器人上或站在提起的机器人下方。

▲ 小心


- 1. 因为机器人手臂是由精密零件组成的,所以在搬运机器人中,务必避免让机器人受到过分的冲击和振动。
- 2. 为确保安全搬运和安装,请事先清除所有的障碍物。用起重机或叉车搬运机器人时要事先清除通道。
- 3. 搬运和保管机器人时,
 - (1) 保持周边环境温度在零下 10°C-60°C 内
 - (2) 保持相对湿度在 35 %-85 %RH 内(无凝露)
 - (3) 避免过分的冲击和振动

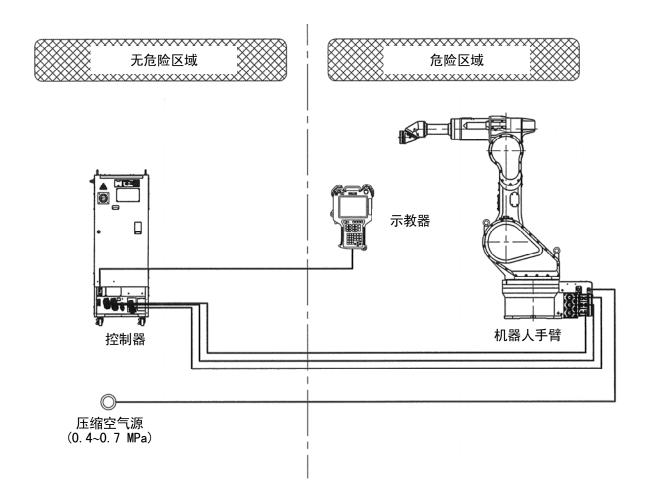
1.2 机器人手臂的安装环境

请把机器人手臂布置在满足下列条件的地方。

- 1. 当安装在地面上时,确保地面的水平度在±5°以内。
- 2. 确保地面和安装座有足够的刚度。
- 3. 确保平面度以避免安装部受额外的力。 (如果平面度实在达不到,请使用衬垫把平面度调整在 0.3 mm 以内。)
- 4. 工作环境温度必须在 0 ° C 40 ° C 以内。 (如果在低温度开始操作时,由于润滑脂/油的高粘度,会引起偏差或过载错误。因此, 请在正常操作前,先以低速预热机器人。)
- 5. 相对湿度必须在 35 % 85 % RH 之间, 无凝露。
- 6. 确保安装位置极少暴露在灰尘、烟雾、油和水环境中。
- 7. 确保安装位置不受过大的振动影响。
- 8. 确保安装位置最少的电磁干扰。
- 9. 确保安装位置有足够机器人动作范围的空间。
 - (1) 在保证机器人最大的运动空间、不会和机器人手臂及安装在手臂上的工具产生干扰的外面,建立安全围栏。
 - (2) 在安全围栏上为了进出设置一个带安全插销安全门。
 - (3) 请遵守有关安全围栏结构/功能的国家标准。

(如 EN953, EN294, EN811, EN1088, ISO13852, ISO13854, ISO/NP14120)

- [注 意]

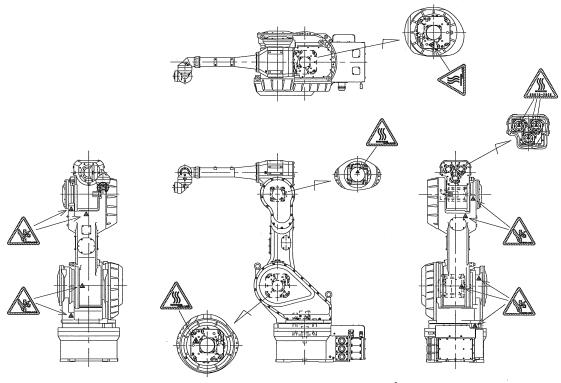

请在机器人手臂轴上,用乙烯基纸保护封闭的关节,以免涂料微粒/杂质进入。

1.3 防爆警告性说明

KF19/26 是一种防爆机器人,采用了加压和内在安全结构等保护。为保证安全运行,务必严格遵守下列安全说明。

<u>↑</u> 危险

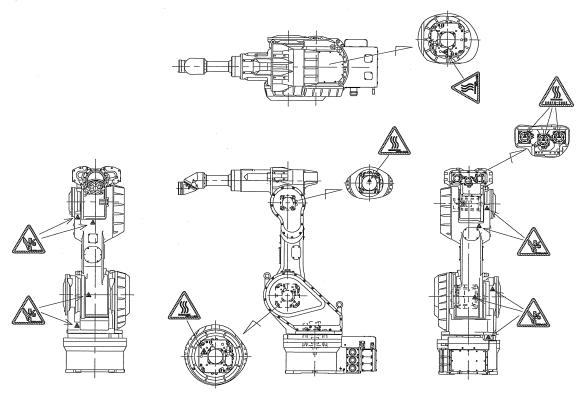
- 1. 这种喷涂机器人是通过密封加压的办法实现其防爆性能的。在松开正压外壳前, 必须听从负责人的命令。
 - (1) 没有负责人的命令,不可松开加压腔的紧固螺钉。
 - (2) 在机器人已被通电的情况下,不可打开正压外壳罩壳。
- 2. 将控制器安装无爆炸可能的在无危险区域。在需要维护、点检、机器人调整、喷涂系统调整而进入机器人区域时,务必关断主电源、关闭供气阀,并确认任何供气管道中,都没有残留的压力。

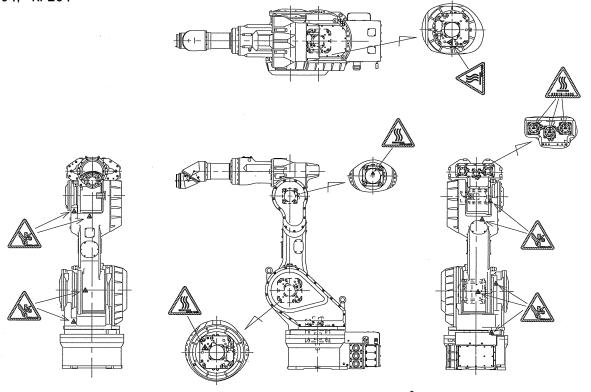


1.4 警告标签

警 告

操作过程中,请注意贴在机器人表面的警告标签,如下图所示的。

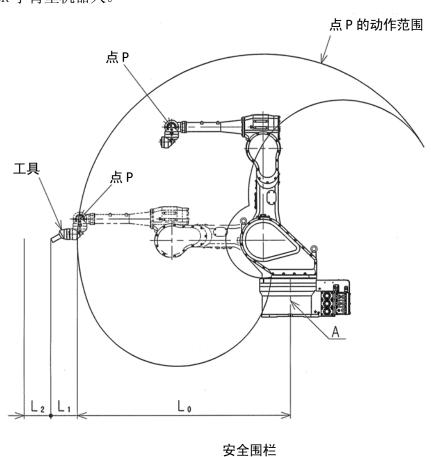

KF192, KF262

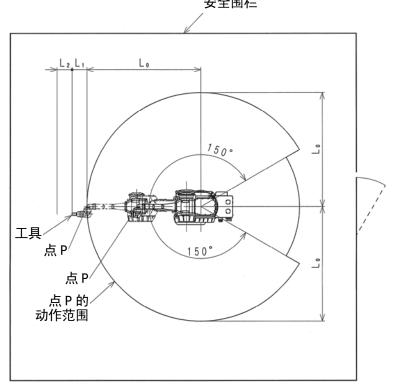

:夹紧/挤压警告标志

: 高温警告标志

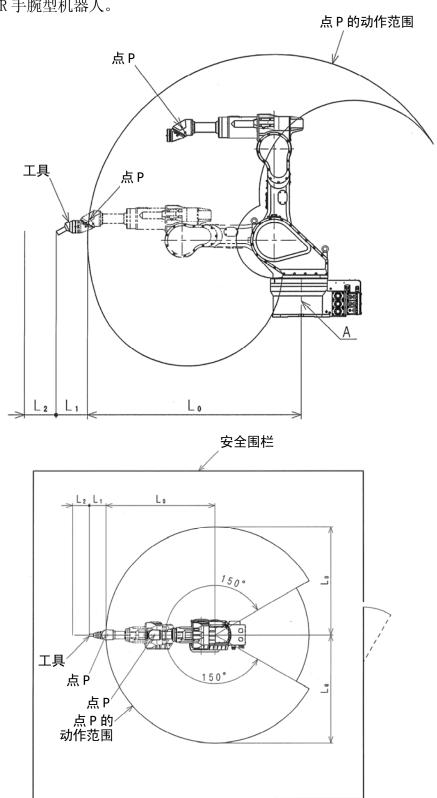
KF193, KF263

KF194, KF264

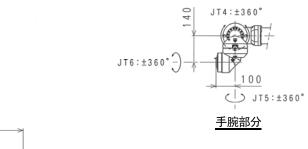


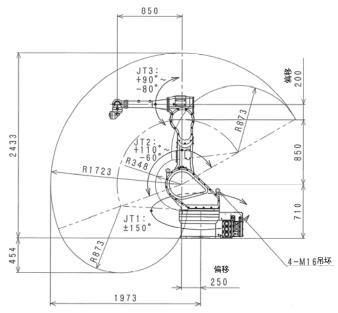

:夹紧/挤压警告标志

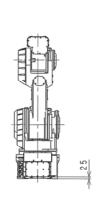
:高温警告标志

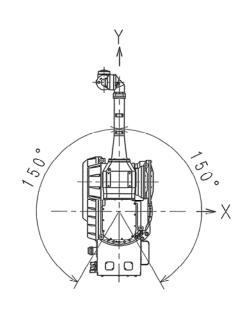

2.0 动作范围和规格说明

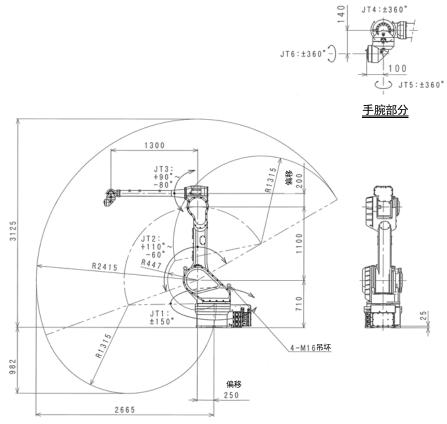
根据机器人的动作范围确定安全围栏的尺寸和位置。 下图表示 BBR 手臂型机器人。



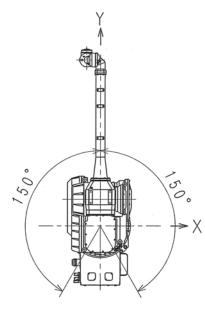



下图表示 3R 手腕型机器人。


上图中,手腕的中心点 P 所能到达的区域代表了机器人的动作范围。参考下图,应保证安全围栏的尺寸大于 $L_0+L_1+L_2$,这里 $L_0=$ 从点 A 到点 P 之间的距离, $L_1=$ 手腕法兰面、工具长度之和(手腕法兰面到工具最大尺寸之和), $L_2=$ 安全空间。关于 L_0 尺寸,请参阅以下机器人运动范围与规格。

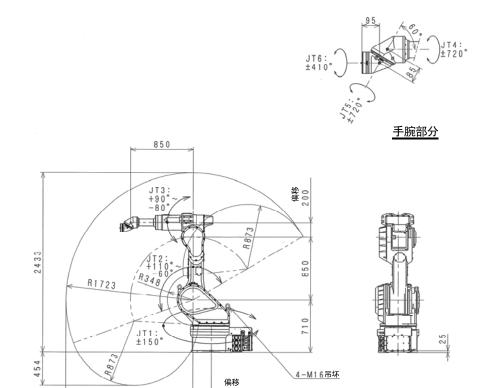


类型	多关节型机器人		
自由度		6	
	JT	动	r作范围
	1	귂	上150 °
	2	+110	°60 °
动作范围	3	+90	°80 °
	4	T	±360 °
	5	±360 °	
	6	±360 °	
最大负载	手腕部分:12 kg(法兰面) 上部手臂:20 kg		kg(法兰面) 臂:20 kg
	JT	力矩	惯性矩
手腕最大负载	4	33.3 N·m	1.28 kg·m²
丁ル取八贝轼	5	28.8 N·m	0.96 kg·m²
	6	7.9 N·m	0.10 kg·m ²
重复精度	±0.5 mm(手腕法兰面)		
质量	约 690 kg		
噪声	74 dB(A)*		



注意* 测量条件:

- 安装在地面上牢靠固定的钢板上。
- 在距离关节 1(JT1)旋转中心 3200 mm 的地方测量。

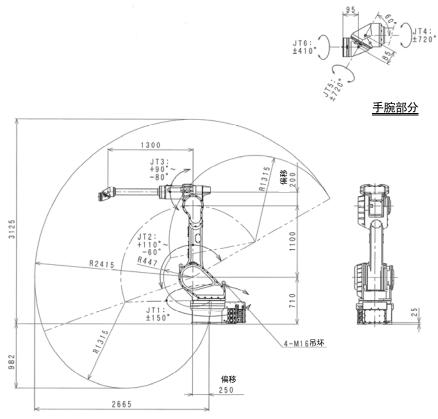


类型	多关节型机器人		
自由度			6
	JT	式	r作范围
	1	\exists	±150 °
	2	+110	°60 °
动作范围	3	+90	°80 °
	4		±360 °
	5	±360 °	
	6	±360 °	
最大负载	手腕部分:12 kg(法兰面) 上部手臂:20 kg		
	JT	力矩	惯性矩
 手腕最大负载	4	33.3 N⋅m	1.28 kg·m²
丁爬取八贝轼	5	28.8 N·m	0.96 kg·m²
	6	7.9 N·m	0.10 kg·m ²
重复精度	±0.5 mm(手腕法兰面)		
质量	约 720 kg		
噪声	74 dB(A)*		

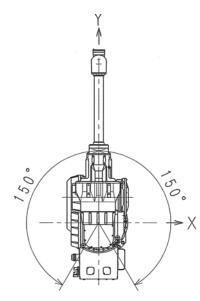
注意* 测量条件:

- 安装在地面上牢靠固定的钢板上。
- 在距离关节 1(JT1)旋转中心 3900 mm 的地方测量。

250

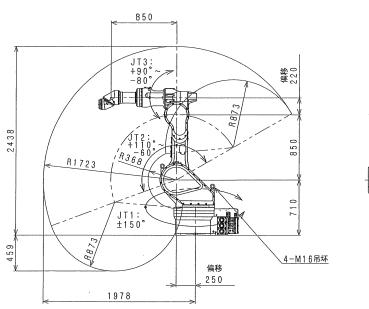

类型	多关节型机器人		型机器人
自由度		(6
	JT	动]作范围
	1	귀	上150 °
	2	+110	°60 °
动作范围	3	+90	°80 °
	4	7	上720 °
	5	±720 °	
	6	±410 °	
最大负载	手腕部分:12 kg(法兰面) 上部手臂:20 kg		kg(法兰面) 臂:20 kg
	JT	力矩	惯性矩
 手腕最大负载	4	33.1 N·m	1.27 kg·m²
于爬取八贝轼	5	26.7 N·m	0.82 kg·m ²
	6	7.9 N·m	0.10 kg·m ²
重复精度	±0.5 mm(手腕法兰面)		
质量	约 720 kg		
噪声	74 dB(A)*		

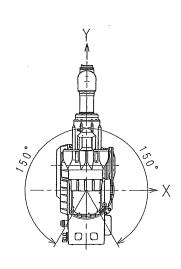
1973



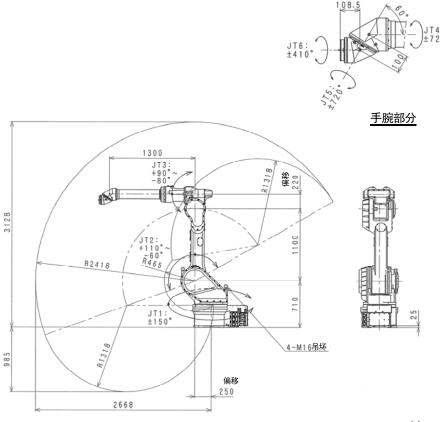
注意* 测量条件:

- 安装在地面上牢靠固定的钢板上。
- 在距离关节 1(JT1) 旋转中心 3200 mm 的地方测量。

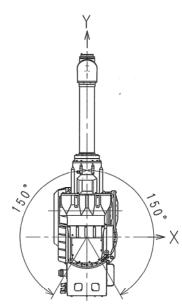

类型	多关节型机器人		
自由度			6
	JT	式	J作范围
	1	7	±150 °
	2	+110	°60 °
动作范围	3	+90	°80 °
	4	=	上720 °
	5	±720 °	
	6	6 ±410 °	
最大负载	手腕部分:12 kg(法兰面) 上部手臂:20 kg		
	JT	力矩	惯性矩
 手腕最大负载	4	33.1 N⋅m	1.27 kg·m²
丁爬取八贝轼	5	26.7 N·m	0.82 kg·m ²
	6	7.9 N·m	0.10 kg·m ²
重复精度	±0.5 mm(手腕法兰面)		
质量	约 740 kg		
噪声	74 dB(A)*		


注意* 测量条件:

- 安装在地面上牢靠固定的钢板上。
- 在距离关节 1 (JT1) 旋转中心 3900 mm 的地方测量。



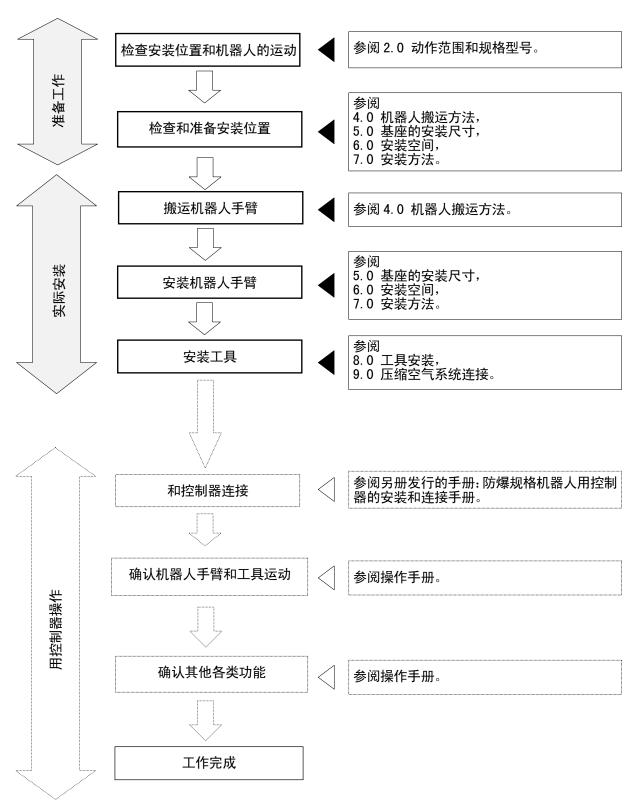
类型	多关节型机器人		
自由度			6
	JT	动	r作范围
	1	1	±150 °
	2	+110	°60 °
动作范围	3	+90	°80 °
	4	7]	上720 °
	5	5 ±720°	
	6	±410 °	
最大负载	手腕部分:12 kg(法兰面) 上部手臂:20 kg		
	JT	力矩	惯性矩
手腕最大负载	4	35.3 N⋅m	1.44 kg·m²
1 加级八贝轼	5	27.7 N·m	0.89 kg·m ²
	6	7.9 N·m	0.10 kg·m ²
重复精度	±0.5 mm(手腕法兰面)		
质量	约 750 kg		
噪声	74 dB(A)*		



注意* 测量条件:

- 安装在地面上牢靠固定的钢 板上。
- 在距离关节 1(JT1) 旋转中心 3200 mm 的地方测量。

类型	多关节型机器人		
自由度		(ô
	JT	动	r作范围
	1	1	±150 °
	2	+110	°60 °
动作范围	3	+90	°80 °
	4	<u>-</u> 1	±720 °
	5	±720 °	
	6	±410 °	
最大负载	手腕部分:12 kg(法兰面) 上部手臂:20 kg		
	JT	力矩	惯性矩
 手腕最大负载	4	35.3 N·m	1.44 kg·m²
于脁取八贝牧	5	27.7 N·m	0.89 kg·m ²
	6	7.9 N·m	0.10 kg·m ²
重复精度	±0.5 mm(手腕法兰面)		手腕法兰面)
质量	约 770 kg		
噪声	74 dB(A)*		



注意* 测量条件:

- 安装在地面上牢靠固定的钢板上。
- 在距离关节 1(JT1) 旋转中心 3900 mm 的地方测量。

3.0 机器人手臂的安装和连接工作流程

本流程图只包含机器人手臂的安装。关于控制器的安装,请参阅防爆规格机器人用控制器的安装和连接手册。

4.0 机器人搬运方法

4.1 钢丝绳吊装

在机器人手臂的两侧放四根钢丝绳,用这四根钢丝绳将手臂上的四个吊坏(M16)扣紧,然后提升机器人,如后面几页中的图所示。

▲ 警告

- 1. 用链滑车等调整钢丝绳的长度,以使钢丝绳能串过不同高度的吊环。
- 2. 当提升机器人时,要小心,机器人会因不同的姿态而向前/向后/向左/向右倾斜。 请务必使机器人姿态为后面页中所示的提升姿态。否则,会出现剧烈的摆动, 以至于钢丝绳和其他物体干涉,从而导致损坏。在钢丝绳接触手臂的地方,请用板、 布等来保护手臂。

型号		KF192	KF262
提升时姿态		1266	1518
	JT1	0°	0°
	JT2	-40°	-58°
提升时	JT3	-77°	-77°
姿态	JT4	90°	0°
	JT5	0°	0°
	JT6	0°	0°

型号		KF193	KF263	
提升时姿态		2191	1611	
	JT1	0°	0°	
	JT2	-58°	-58°	
提升时 JT3		-77°	-77°	
姿态	JT4	0°	0°	
	JT5	0°	0°	
	JT6	0°	0°	

型号		KF194	KF264
提升时姿态		1199	1624
	JT1	0°	0°
	JT2	-58°	-58°
提升时	JT3	-77°	-77°
姿态	JT4	0°	0°
	JT5	0°	0°
	JT6	0°	0°

5.0 基座的安装尺寸

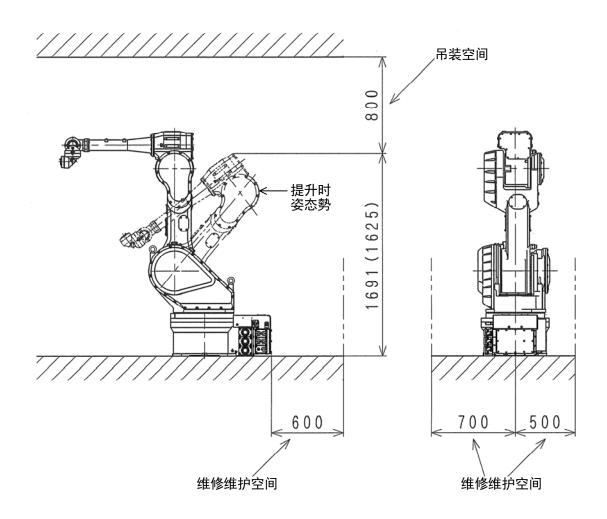
安装机器人手臂时,请在基座部分的螺钉孔中,使用高强度螺栓固定。

型号	KF19/26 系列
基座的安装尺寸	525 8-18 #R 40 390 40 1.007 267±0.1
固定螺栓孔的横截面	832
螺栓孔	8 - ø 18
高强度螺栓	8 - M16 材料:SCM435 强度等级:10.9 或以上
紧固力矩	235 N·m
水平度	±5°以内

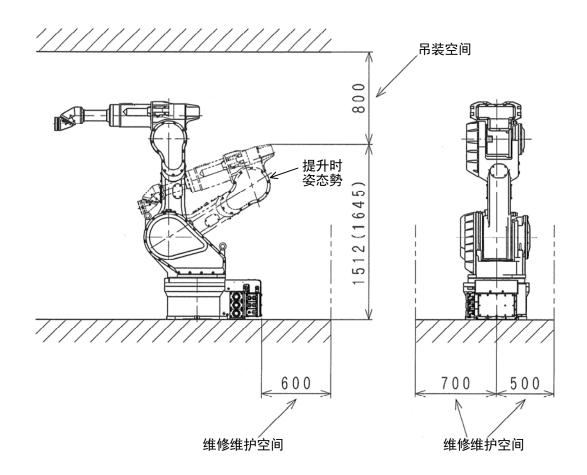
↑ 小心

请确保将手臂安装平面的平面度小于等于 0.3 mm, 否则机器人可能会损坏。

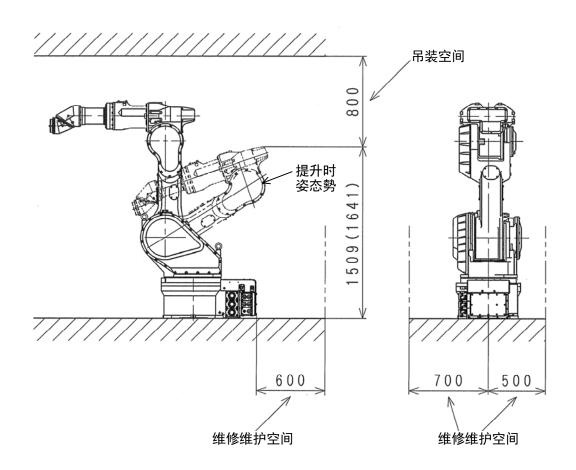
6.0 安装空间


确保机器人手臂的安装空间如下所述。

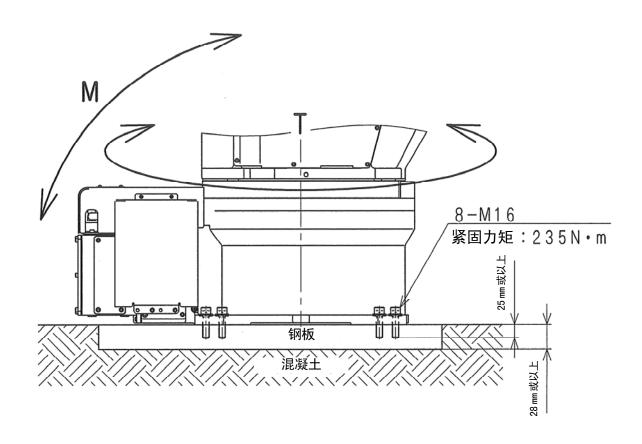
- 1. 为了方便维修,请在机器人手臂的后面至少留出 600 mm 的空间,从机器人手臂的右侧中心至少留出 500 mm 的空间,从机器人手臂的左侧中心至少留出 700 mm 的空间。
- 2. 在提起的机器人上方为吊装留出800 mm的净空。


▲ 小心

请为机器人手臂安装,考虑下图所示的维修维护空间。对于安全围栏的安装空间,请参考 2.0 动作范围和规格说明。

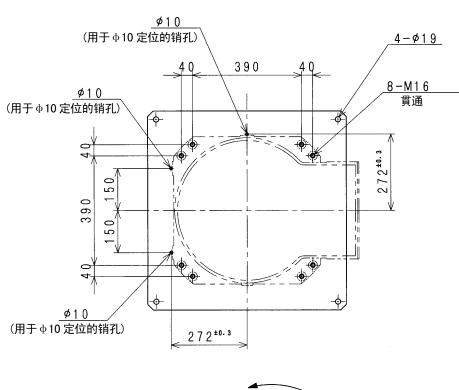

KF192(括号内的尺寸表示 KF262。)

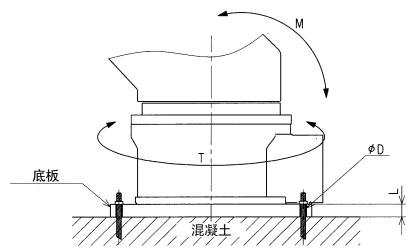
KF193(括号内的尺寸表示 KF263。)



KF194(括号内的尺寸表示 KF264。)

7.0 安装方法


1. 将机器人手臂的基座部分直接固定在地面上,来安装机器人如下图所示,请将 28 mm 或以上厚度的钢板埋入混凝土地板面中用作基础,直接固定基座部分在钢板上。或采用地脚螺栓直接固定基座部分在混凝土上。该钢板必须尽可能稳固以经受得住机器人 M、T 两根轴的反作用力。



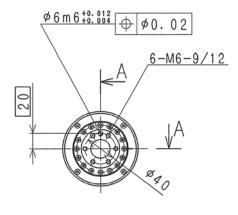
型号	KF19/26 系列
M (反转力矩)	16000 N·m
T (旋转力矩)	16000 N·m

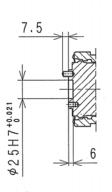
2. 用机器人底板(选件)安装(安装例子)

请参阅下安装例子,实施基礎工事等。在下例子中,用底板(选件)上的4个Φ19螺栓孔固定在混凝土上,来安装机器人。来自机器人的反作用力和直接将基座在地面上安装时一样。

型号	KF19/26 系列
φD	Ф16 mm
L	25 mm 或以上

8.0 工具安装

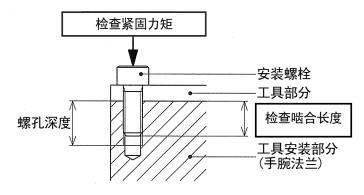

警告


当给机器人安装工具时,必须始终关断控制器电源和元电源。并清楚地标示维护工作正在进行中。也可以锁定元电源开关并挂上标签。

8.1 KF192/262

1. 手腕末端的尺寸(法兰面)

安装工具用的法兰在机器人的手臂的末端。如下图,用 Φ 40 圆周上的螺纹孔, 拧紧安装螺栓。同时, 请使用定位销和中心基准孔, 来定位工具。



视图 A-A

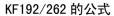
2. 安装螺栓规格

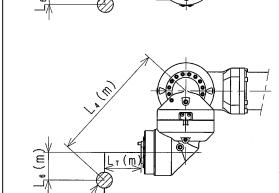
请按照安装法兰的螺孔深度和工具的厚度,选择安装螺栓的长度,以保证可靠的螺纹连接(见下图)。同时,用按下面所示的指定力矩紧固高强度螺栓。

▲ 小 心

如果紧固深度超出螺孔深度,安装螺栓会碰到 底部,导致工具不能安全地安装在法兰上。

国间	
型号	KF192/262
螺孔	6-M6
螺纹孔	Ф 40
销	Φ6m6 长度7.5
中心基准孔	Ф 25Н7
螺孔深度	9 mm
啮合长度	7.5 - 8.5 mm
高强度螺栓	SCM435,
问近次场性	10.9 或以上
紧固力矩	11.76 N⋅m


3. 计算手腕轴的负荷


- (1) 机器人的最大负载能力,由各机器人型号规定。
- (2) 严格遵守下列对机器人负载力矩、各手腕轴(JT4, JT5, JT6)的负载惯性矩的限制。

▲ 小 心

超出额定的负载能力,可能会导致机器人运动性能变坏,并会缩短机器人的寿命。规定的负载能力包括如喷枪、射枪夹持器、配管/配线等的总质量。如果总质量超出规定的负载能力,请在操作前咨询川崎公司。

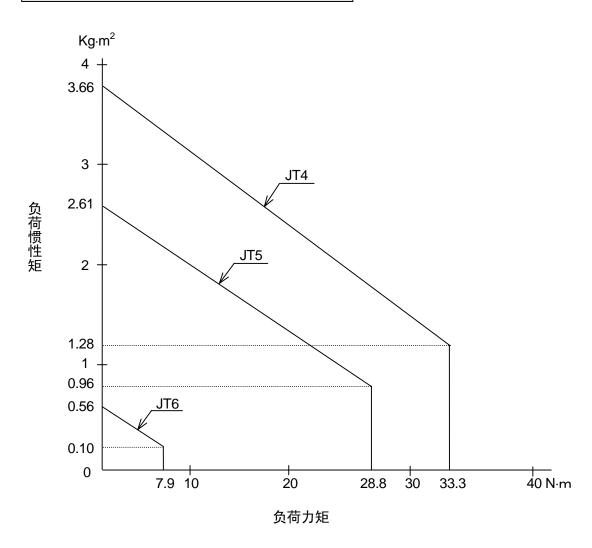
负载力矩和负载惯性矩可按下列公式估算。

M'(kg)

负荷重心

负荷质量 : M≤Mmax. (kg) 负荷力矩 : T=9. 8·M·L (N·m) 负荷惯性矩 : I=M·L² (kg·m²)

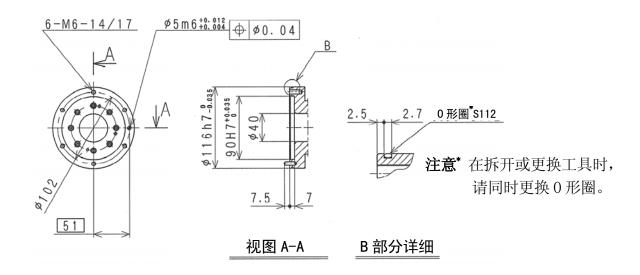
> M:负荷质量 Mmax.:12 kg


L_(4~6):旋转中心与负荷重心之间的距离。 (单位:m)(请看左图)

$$L_4 = \sqrt{(L_6 + 0.14)^2 + (L_T + 0.1)^2}$$
 (m)

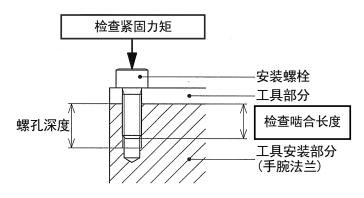
$$L_5 = \sqrt{L_6^2 + (L_T + 0.1)^2}$$
 (m)

请遵守下列负载力矩和各手腕轴的负载惯性矩的限制条件。


8. 2 KF193/263

▲ 警告

当给机器人安装工具时,必须始终关断控制器电源和元电源。并清楚地标示维护工作正在进行中。也可以锁定元电源开关并挂上标签。


1. 手腕末端的尺寸(法兰面)

安装工具用的法兰在机器人的手臂的末端。如下图,用 ϕ 102 圆周上的螺纹孔,拧紧安装螺栓。同时,请使用定位销和中心基准轴,来定位工具。

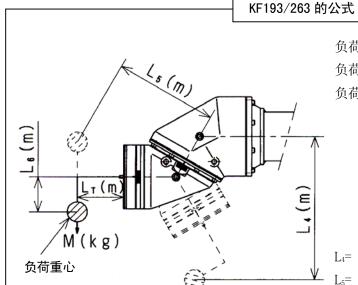
2. 安装螺栓规格

请按照安装法兰的螺孔深度和工具的厚度,选择安装螺栓的长度,以保证可靠的螺纹连接(见下图)。同时,用按下面所示的指定力矩紧固高强度螺栓。

▲ 小 心

如果紧固深度超出螺孔深度,安装螺栓会碰到底部,导致工具不能安全地安装在法兰上。

型号	KF193/263
螺孔	6-M6
螺纹孔	ф 102
销	φ5m6 长度7.5
中心基准轴	ф116h7
螺孔深度	14 mm
啮合长度	9 - 12 mm
高强度螺栓	SCM435,
问 压反 垛性	10.9 或以上
紧固力矩	11.76 N·m


3. 计算手腕轴的负荷

- (1) 机器人的最大负载能力,由各机器人型号规定。
- (2) 严格遵守下列对机器人负载力矩、各手腕轴(JT4, JT5, JT6)的负载惯性矩的限制。

▲ 小心

超出额定的负载能力,可能会导致机器人运动性能变坏,并会缩短机器人的寿命。规定的负载能力包括如喷枪、射枪夹持器、配管/配线等的总质量。如果总质量超出规定的负载能力,请在操作前咨询川崎公司。

负载力矩和负载惯性矩可按下列公式估算。

17470

负荷质量

: M≦Mmax. (kg)

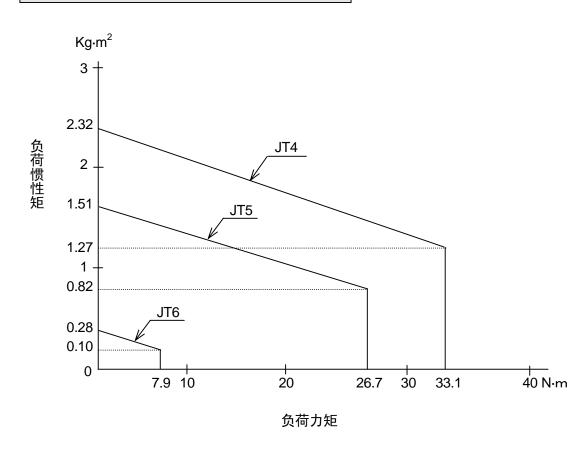
负荷力矩 : T=9.8·M·L(N·m)

负荷惯性矩 : I=M·L²(kg·m²)

M:负荷质量

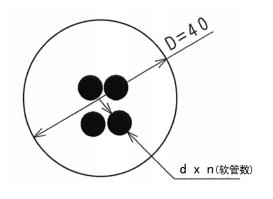
Mmax.:12 kg

L(4~6):旋转中心与负荷重心之间的距离。


(单位:m)(请看左图)

 $L_4 = L_{\text{T}} \cdot \sin 60^{\circ} + L_{6} \cdot \cos 30^{\circ} + 0.156 \text{ (m)}$

 $V_{5} = L_{T} \cdot \sin 60^{\circ} + L_{6} \cdot \cos 30^{\circ} + 0.083 \text{ (m)}$


请遵守下列负载力矩和各手腕轴的负载惯性矩的限制条件。

KF193/263

4. 手腕内的内置软管

(1) KF193/263 的手腕内直径为 ø40。 推荐的内置软管容积率应小于 25 %*。容积率按下列公式估算。

容积率 =
$$\frac{d^2}{4}\pi n \div \frac{D^2}{4}\pi \times 100$$
 [%] 软管截面积 手腕内腔截面积

▲ 小心

如上面计算的那样,如果软管截面面积的总和超过了手腕内孔的截面积的 25 %,软管寿命将会缩短。而且,即使容积率小于 25 %,软管寿命也会随 手腕的姿势/角度而有不同程度的缩短。所以,在开始操作前,请全面检查 和检测各软管及其排列状态。

注意*如果容积率超出 25 %或使用大于等于 ø 12 的软管时,在操作前,请咨询 川崎公司。

(2) 内置软管的材料,推荐使用尼龙。

▲ 小心

使用非尼龙软管,可能会明显缩短它们的寿命。

(3) 当在手腕中安装内置软管时,请务必对整条软管进行润滑,可使用如凡士林等润滑剂。请定期检查内置软管**,一旦出现失效迹象或发现破损时,请立即更换。

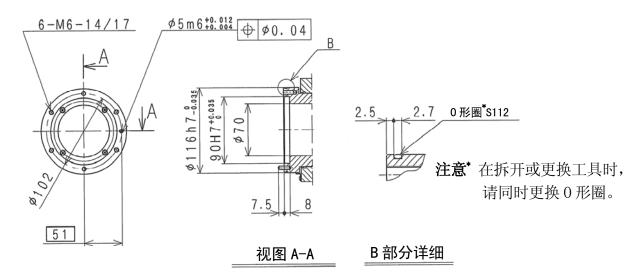
检查周期:每500小时

软管更换周期(估计的):每10000小时

注意** 另外,无论什么时候检查软管时,请对内置软管进行润滑。

——— [注意]—

上述更换周期仅仅是一种推荐标准,并不是指软管的寿命保证周期。


8.3 KF194/264

▲ 警告

当给机器人安装工具时,必须始终关断控制器电源和元电源。并清楚地标示维护工作正在进行中。也可以锁定元电源开关并挂上标签。


1. 手腕末端的尺寸(法兰面)

安装工具用的法兰在机器人的手臂的末端。如下图,用 φ 102 圆周上的螺纹孔, 拧紧安装螺栓。同时,请使用定位销和中心基准轴,来定位工具。

2. 安装螺栓规格

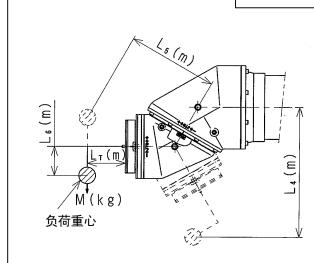
请按照安装法兰的螺孔深度和工具的厚度,选择安装螺栓的长度,以保证可靠的螺纹连接(见下图)。同时,用按下面所示的指定力矩紧固高强度螺栓。

▲ 小 心

如果紧固深度超出螺孔深度,安装螺栓会碰到底部,导致工具不能安全地安装在法兰上。

<u> </u>
KF194/264
6-M6
Ф 102
Φ5m6 长度 7.5
ф116h7
14 mm
9 - 12 mm
SCM435,
10.9 或以上
11.76 N·m

3. 计算手腕轴的负荷


- (1) 机器人的最大负载能力,由各机器人型号规定。
- (2) 严格遵守下列对机器人负载力矩、各手腕轴(JT4, JT5, JT6)的负载惯性矩的限制。

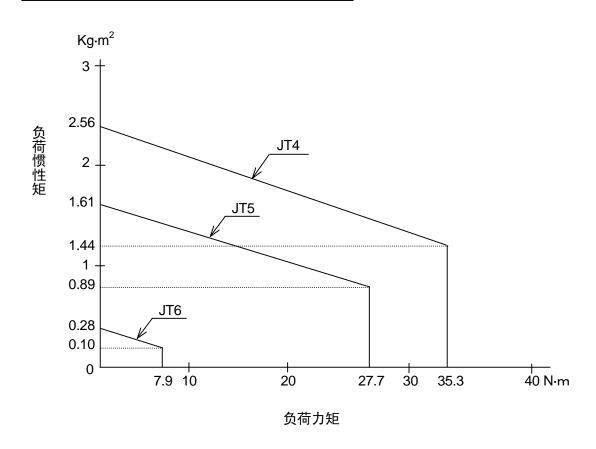
▲ 小心

超出额定的负载能力,可能会导致机器人运动性能变坏,并会缩短机器人的寿命。规定的负载能力包括如喷枪、射枪夹持器、配管/配线等的总质量。如果总质量超出规定的负载能力,请在操作前咨询川崎公司。

负载力矩和负载惯性矩可按下列公式估算。

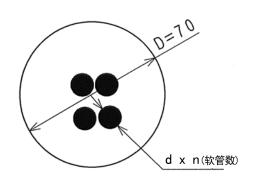
负荷质量 : M≤Mmax. (kg)
负荷力矩 : T=9. 8·M·L (N·m)
负荷惯性矩 : I=M·L² (kg·m²)

M:负荷质量


Mmax.:12 kg

L(4~6):旋转中心与负荷重心之间的距离。

(单位:m)(请看左图)


 L_4 = $L_T \cdot \sin 60^{\circ} + L_6 \cdot \cos 30^{\circ} + 0.181 (m)$ L_5 = $L_T \cdot \sin 60^{\circ} + L_6 \cdot \cos 30^{\circ} + 0.094 (m)$ 请遵守下列负载力矩和各手腕轴的负载惯性矩的限制条件。

KF194/264

4. 手腕内的内置软管

(1) KF194/264 的手腕内直径为 Ø70。 推荐的内置软管容积率应小于 25 %*。容积率按下列公式估计。

容积率 =
$$\frac{d^2}{4}\pi n \div \frac{D^2}{4}\pi \times 100$$
 [%] 软管截面积 手腕内腔截面积

▲ 小心

如上面计算的那样,如果软管截面面积的总和超过了手腕内孔的截面积的 25 %,软管寿命将会缩短。而且,即使容积率小于 25 %,软管寿命也会随手腕的姿势/角度而有不同程度的缩短。所以,在开始操作前,请全面检查和检测各软管及其排列状态。

注意* 如果容积率超出 25 %或使用大于等于 ø 12 的软管时,在操作前,请咨询 川崎公司。

(2) 内置软管的材料,推荐使用尼龙。

▲ 小心

使用非尼龙软管,可能会明显缩短它们的寿命。

(3) 当在手腕中安装内置软管时,请务必对整条软管进行润滑,可使用如凡士林等润滑剂。请定期检查内置软管**,一旦出现失效迹象或发现破损时,请立即更换。 检查周期:每 500 小时

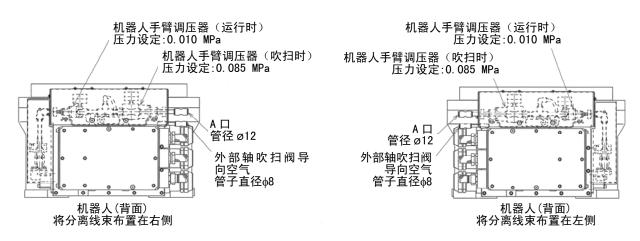
软管更换周期(估计的):每10000小时

注意** 另外,无论什么时候检查软管时,请对内置软管进行润滑。

—— 「注 意] —

上述更换周期仅仅是一种推荐标准,并不是指软管的寿命保证周期。

9.0 压缩空气系统连接


9.1 防爆规格

KF19/26 系列机器人是采用压力和内部安全结构保护的防爆机器人。

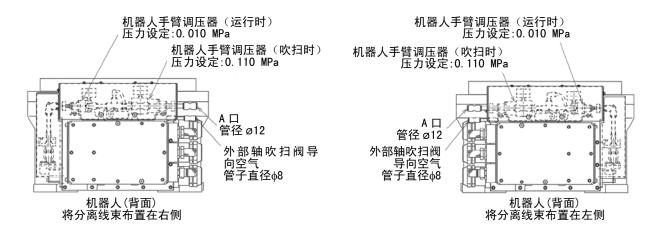
9.2 为机器人手臂供气

9.2.1 日本防爆规格

压缩空气连接接口在机器人手臂的基座上。请从 A 口(管径 ø 12)送入压缩空气, A 口在机器人手臂基座的后部,请参阅下图。

▲ 小心

不要改变机器人手臂旁边的调压器的设定,该调压器已在出厂时调节好了。


请使用符合下列条件的洁净空气。

- 1. 固体物 0.01 μm 或以下
- 2. 含油量...... 湿气分离:99.9999 %或以上
- 3. 湿度 露点:-17 ℃ 或以下(大气常压下)
- 4. 输入压力.... 0.4 ~ 0.7 MPa(4.1 ~ 7.1 kgf/cm²)
- 5. 输入流量.... 300 L/min. (nor) (仅当吹洗时)

当吹洗完毕时,排气侧的空气操作阀关闭。此后,空气的消耗减到最小,仅用于补偿各密封部分的泄漏。

9.2.2 中国防爆规格

压缩空气连接接口在机器人手臂的基座上。请从 A 口(管径 ø 12)送入压缩空气, A 口在机器人手臂基座的后部,请参阅下图。

▲ 小心

不要改变机器人手臂旁边的调压器的设定,该调压器已在出厂时调节好了。

⚠ 小心

请使用符合下列条件的洁净空气。

- 1. 固体物 0.01 μm 或以下
- 2. 含油量...... 湿气分离:99.9999 %或以上
- 3. 湿度 露点:-17 ℃ 或以下(大气常压下)
- 4. 输入压力.... 0.4 ~ 0.7 MPa(4.1 ~ 7.1 kgf/cm²)
- 5. 输入流量.... 400 L/min. (nor) (仅当吹洗时)

当吹洗完毕时,排气侧的空气操作阀关闭。此后,空气的消耗减到最小,仅用于补偿各密封部分的泄漏。

川崎机器人 KF19/26 系列 安装和连接手册

2010年 6月: 第一版

川崎重工业株式会社出版

90202-1116DCA